Anaerobic nitrate reduction divergently governs population expansion of the enteropathogen Vibrio cholerae

厌氧硝酸盐还原以不同的方式控制肠道病原体霍乱弧菌的种群扩张

阅读:6
作者:Emilio Bueno, Brandon Sit, Matthew K Waldor, Felipe Cava

Abstract

To survive and proliferate in the absence of oxygen, many enteric pathogens can undergo anaerobic respiration within the host by using nitrate (NO3-) as an electron acceptor1,2. In these bacteria, NO3- is typically reduced by a nitrate reductase to nitrite (NO2-), a toxic intermediate that is further reduced by a nitrite reductase3. However, Vibrio cholerae, the intestinal pathogen that causes cholera, lacks a nitrite reductase, leading to NO2- accumulation during nitrate reduction4. Thus, V. cholerae is thought to be unable to undergo NO3--dependent anaerobic respiration4. Here, we show that during hypoxic growth, NO3- reduction in V. cholerae divergently affects bacterial fitness in a manner dependent on environmental pH. Remarkably, in alkaline conditions, V. cholerae can reduce NO3- to support population growth. Conversely, in acidic conditions, accumulation of NO2- from NO3- reduction simultaneously limits population expansion and preserves cell viability by lowering fermentative acid production. Interestingly, other bacterial species such as Salmonella typhimurium, enterohaemorrhagic Escherichia coli (EHEC) and Citrobacter rodentium also reproduced this pH-dependent response, suggesting that this mechanism might be conserved within enteric pathogens. Our findings explain how a bacterial pathogen can use a single redox reaction to divergently regulate population expansion depending on the fluctuating environmental pH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。