Conditional loss of uterine Pten unfailingly and rapidly induces endometrial cancer in mice

子宫 Pten 的条件性缺失会迅速且可靠地诱发小鼠子宫内膜癌

阅读:9
作者:Takiko Daikoku, Yasushi Hirota, Susanne Tranguch, Ayesha R Joshi, Francesco J DeMayo, John P Lydon, Lora H Ellenson, Sudhansu K Dey

Abstract

Etiology of endometrial cancer (EMC) is not fully understood. Animal models with rapidly and spontaneously developing EMC will help explore mechanisms of cancer initiation and progression. Pten(+/-) mice are currently being used as a model to study EMC. These females develop atypical endometrial hyperplasia of which approximately 20% progresses to EMC. In addition, tumors develop in other organs, complicating the use of this model to specifically study EMC. Here, we show that conditional deletion of endometrial Pten results in EMC in all female mice as early as age 1 month with myometrial invasion occurring by 3 months. In contrast, conditional deletion of endometrial p53 had no phenotype within this time frame. Whereas mice with endometrial Pten deletion had a life span of approximately 5 months, mice with combined deletion of endometrial Pten and p53 had a shorter life span with an exacerbated disease state. Such rapid development of EMC from homozygous loss of endometrial Pten suggests that this organ is very sensitive to this tumor suppressor gene for tumor development. All lesions at early stages exhibited elevated Cox-2 and phospho-Akt levels, hallmarks of solid tumors. More interestingly, levels of two microRNAs miR-199a(*) and miR-101a that posttranscriptionally inhibit Cox-2 expression were down-regulated in tumors in parallel with Cox-2 up-regulation. This mouse model in which the loxP-Cre system has been used to delete endometrial Pten and/or p53 allows us to study in detail the initiation and progression of EMC. These mouse models have the added advantage because they mimic several features of human EMC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。