Sensitive high-throughput single-cell RNA-seq reveals within-clonal transcript correlations in yeast populations

灵敏的高通量单细胞 RNA 测序揭示酵母群体中克隆内转录本的相关性

阅读:4
作者:Mariona Nadal-Ribelles #, Saiful Islam #, Wu Wei #, Pablo Latorre #, Michelle Nguyen, Eulàlia de Nadal, Francesc Posas, Lars M Steinmetz

Abstract

Single-cell RNA sequencing has revealed extensive cellular heterogeneity within many organisms, but few methods have been developed for microbial clonal populations. The yeast genome displays unusually dense transcript spacing, with interleaved and overlapping transcription from both strands, resulting in a minuscule but complex pool of RNA that is protected by a resilient cell wall. Here, we have developed a sensitive, scalable and inexpensive yeast single-cell RNA-seq (yscRNA-seq) method that digitally counts transcript start sites in a strand- and isoform-specific manner. YscRNA-seq detects the expression of low-abundance, noncoding RNAs and at least half of the protein-coding genome in each cell. In clonal cells, we observed a negative correlation for the expression of sense-antisense pairs, whereas paralogs and divergent transcripts co-expressed. By combining yscRNA-seq with index sorting, we uncovered a linear relationship between cell size and RNA content. Although we detected an average of ~3.5 molecules per gene, the number of expressed isoforms is restricted at the single-cell level. Remarkably, the expression of metabolic genes is highly variable, whereas their stochastic expression primes cells for increased fitness towards the corresponding environmental challenge. These findings suggest that functional transcript diversity acts as a mechanism that provides a selective advantage to individual cells within otherwise transcriptionally heterogeneous populations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。