Comprehensive analysis of intercellular communication in the thermogenic adipose niche

产热脂肪微环境细胞间通讯的综合分析

阅读:5
作者:Farnaz Shamsi #, Rongbin Zheng #, Li-Lun Ho, Kaifu Chen, Yu-Hua Tseng0

Abstract

Brown adipose tissue (BAT) is responsible for regulating body temperature through adaptive thermogenesis. The ability of thermogenic adipocytes to dissipate chemical energy as heat counteracts weight gain and has gained considerable attention as a strategy against obesity. BAT undergoes major remodeling in a cold environment. This remodeling results from changes in the number and function of brown adipocytes, expanding the network of blood vessels and sympathetic nerves, and changes in the composition and function of immune cells. Such synergistic adaptation requires extensive crosstalk between individual cells in the tissue to coordinate their responses. To understand the mechanisms of intercellular communication in BAT, we apply the CellChat algorithm to single-cell transcriptomic data of mouse BAT. We construct an integrative network of the ligand-receptor interactome in BAT and identify the major signaling inputs and outputs of each cell type. By comparing the ligand-receptor interactions in BAT of mice housed at different environmental temperatures, we show that cold exposure enhances the intercellular interactions among the major cell types in BAT, including adipocytes, adipocyte progenitors, lymphatic and vascular endothelial cells, myelinated and non-myelinated Schwann cells, and immune cells. These interactions are predicted to regulate the remodeling of the extracellular matrix, the inflammatory response, angiogenesis, and neurite growth. Together, our integrative analysis of intercellular communications in BAT and their dynamic regulation in response to housing temperatures provides a new understanding of the mechanisms underlying BAT thermogenesis. The resources presented in this study offer a valuable platform for future investigations of BAT development and thermogenesis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。