Coincident activation of metabotropic glutamate receptors and NMDA receptors (NMDARs) downregulates perisynaptic/extrasynaptic NMDARs and enhances high-fidelity neurotransmission at the developing calyx of Held synapse

代谢型谷氨酸受体和 NMDA 受体 (NMDAR) 的同时激活会下调突触周围/突触外 NMDAR,并增强正在发育的 Held 突触花萼处的高保真神经传递

阅读:5
作者:Indu Joshi, Yi-Mei Yang, Lu-Yang Wang

Abstract

NMDA receptors (NMDARs) are usually downregulated in developing central synapses, but underlying mechanisms and functional consequences are not well established. Using developing calyx of Held synapses in the mouse auditory brainstem, we show here that pairing presynaptic stimulation with postsynaptic depolarization results in a persistent downregulation in the summated amplitude of NMDAR-mediated EPSCs (NMDAR-EPSCs) during a train of stimuli (100/200 Hz, 100 ms) at both 22 degrees C and 35 degrees C. In contrast, the amplitude of single NMDAR-EPSCs or AMPA receptor-mediated EPSCs in the same synapses is not significantly altered, implying a preferential downregulation of perisynaptic/extrasynaptic NMDARs. Induction of this downregulation is blocked by antagonists for NMDARs or group I metabotropic glutamate receptors (mGluRs), suggesting that coincident activation of these two receptors is required. When the postsynaptic neuron is loaded with the fast Ca2+ buffer BAPTA or depolarized to +60 mV to reduce the driving force for Ca2+ influx, downregulation of the summated NMDAR-EPSCs is abolished, indicating Ca2+ plays a critical role in the induction. The expression of this downregulation depends on ongoing synaptic activity, and is attenuated by a dynamin peptide (D15) that blocks clathrin-dependent internalization. We further demonstrated that the same induction paradigm specifically reduces NMDAR-dependent plateau potential and aberrant spike firings during repetitive activity. Together, our results suggest that coincident activation of mGluRs and NMDARs during intense synaptic activity may lead to selective endocytosis of NMDARs in the perisynaptic/extrasynaptic domain, and implicate that mGluRs are potentially important for gating development of high-fidelity neurotransmission at this synapse.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。