Origin of acetylcholine antagonism in ELIC, a bacterial pentameric ligand-gated ion channel

细菌五聚体配体门控离子通道 ELIC 中乙酰胆碱拮抗作用的起源

阅读:4
作者:Mykhaylo Slobodyanyuk #, Jesús A Banda-Vázquez #, Mackenzie J Thompson, Rebecca A Dean, John E Baenziger, Roberto A Chica, Corrie J B daCosta

Abstract

ELIC is a prokaryotic homopentameric ligand-gated ion channel that is homologous to vertebrate nicotinic acetylcholine receptors. Acetylcholine binds to ELIC but fails to activate it, despite bringing about conformational changes indicative of activation. Instead, acetylcholine competitively inhibits agonist-activated ELIC currents. What makes acetylcholine an agonist in an acetylcholine receptor context, and an antagonist in an ELIC context, is not known. Here we use available structures and statistical coupling analysis to identify residues in the ELIC agonist-binding site that contribute to agonism. Substitution of these ELIC residues for their acetylcholine receptor counterparts does not convert acetylcholine into an ELIC agonist, but in some cases reduces the sensitivity of ELIC to acetylcholine antagonism. Acetylcholine antagonism can be abolished by combining two substitutions that together appear to knock out acetylcholine binding. Thus, making the ELIC agonist-binding site more acetylcholine receptor-like, paradoxically reduces the apparent affinity for acetylcholine, demonstrating that residues important for agonist binding in one context can be deleterious in another. These findings reinforce the notion that although agonism originates from local interactions within the agonist-binding site, it is a global property with cryptic contributions from distant residues. Finally, our results highlight an underappreciated mechanism of antagonism, where agonists with appreciable affinity, but negligible efficacy, present as competitive antagonists.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。