Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease

腺病毒介导的X染色体连接的细胞凋亡抑制剂和神经胶质细胞源性神经营养因子基因转移对1-甲基-4-苯基-1,2,3,6-四氢吡啶帕金森病模型的保护作用

阅读:6
作者:O Eberhardt, R V Coelln, S Kugler, J Lindenau, S Rathke-Hartlieb, E Gerhardt, S Haid, S Isenmann, C Gravel, A Srinivasan, M Bahr, M Weller, J Dichgans, J B Schulz

Abstract

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) produces clinical, biochemical, and neuropathological changes reminiscent of those occurring in idiopathic Parkinson's disease (PD). Here we show that a peptide caspase inhibitor, N-benzyloxy-carbonyl-val-ala-asp-fluoromethyl ketone, or adenoviral gene transfer (AdV) of a protein caspase inhibitor, X-chromosome-linked inhibitor of apoptosis (XIAP), prevent cell death of dopaminergic substantia nigra pars compacta (SNpc) neurons induced by MPTP or its active metabolite 1-methyl-4-phenylpyridinium in vitro and in vivo. Because the MPTP-induced decrease in striatal concentrations of dopamine and its metabolites does not differ between AdV-XIAP- and control vector-treated mice, this protection is not associated with a preservation of nigrostriatal terminals. In contrast, the combination of adenoviral gene transfer of XIAP and of the glial cell line-derived neurotrophic factor to the striatum provides synergistic effects, rescuing dopaminergic SNpc neurons from cell death and maintaining their nigrostriatal terminals. These data suggest that a combination of a caspase inhibitor, which blocks death, and a neurotrophic factor, which promotes the specific function of the rescued neurons, may be a promising strategy for the treatment of PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。