A recombinant reporter system for monitoring reactivation of an endogenously DNA hypermethylated gene

用于监测内源性 DNA 高甲基化基因再激活的重组报告系统

阅读:5
作者:Ying Cui, Frederick Hausheer, Robert Beaty, Cynthia Zahnow, Jean Pierre Issa, Frederick Bunz, Stephen B Baylin

Abstract

Reversing abnormal gene silencing in cancer cells due to DNA hypermethylation of promoter CpG islands may offer new cancer prevention or therapeutic approaches. Moreover, such approaches may be broadly applicable to enhance the efficacy of radiotherapy, chemotherapy, or immunotherapy. Here, we demonstrate the powerful utility of a novel gene reporter system to permit studies of the dynamics, mechanisms, and translational relevance of candidate therapies of this type in human colon cancer cells. The reporter system is based on in situ modification of the endogenous locus of the tumor-suppressor gene SFRP1, a pivotal regulator of the Wnt pathway that is silenced by DNA hypermethylation in many colon cancers. The modified SFRP1-GFP reporter allele used remained basally silent, like the unaltered allele, and it was activated only by drug treatments that derepress gene silencing by reversing DNA hypermethylation. We used the established DNA methyltransferase inhibitor (DNMTi) 5-aza-deoxycitidine (DAC) to show how this system can be used to address key questions in the clinical development of epigenetic cancer therapies. First, we defined conditions for which clinically relevant dosing could induce sustained induction of RNA and protein. Second, we found that, in vivo, a more prolonged drug exposure than anticipated was essential to derepress gene silencing in significant cell numbers, and this has implications for generating effective anticancer responses in patients with hematopoietic or solid tumors. Finally, we discovered how histone deacetylase inhibitors (HDACi) alone, when administered to cells actively replicating DNA, can robustly reexpress the silenced gene with no change in promoter methylation status. Taken together, our findings offer a new tool and insights for devising optimal clinical experiments to evaluate DNMTi and HDACi, alone or in combination, and with other cancer treatments, as agents for the epigenetic management and prevention of cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。