Polycomb-Mediated Disruption of an Androgen Receptor Feedback Loop Drives Castration-Resistant Prostate Cancer

多梳蛋白介导的雄激素受体反馈回路破坏导致去势抵抗性前列腺癌

阅读:9
作者:Ka-Wing Fong, Jonathan C Zhao, Jung Kim, Shangze Li, Yeqing A Yang, Bing Song, Laure Rittie, Ming Hu, Ximing Yang, Bernard Perbal, Jindan Yu

Abstract

The lethal phenotype of castration-resistant prostate cancer (CRPC) is generally caused by augmented signaling from the androgen receptor (AR). Here, we report that the AR-repressed gene CCN3/NOV inhibits AR signaling and acts in a negative feedback loop to block AR function. Mechanistically, a cytoplasmic form of CCN3 interacted with the AR N-terminal domain to sequester AR in the cytoplasm of prostate cancer cells, thereby reducing AR transcriptional activity and inhibiting cell growth. However, constitutive repression of CCN3 by the Polycomb group protein EZH2 disrupted this negative feedback loop in both CRPC and enzalutamide-resistant prostate cancer cells. Notably, restoring CCN3 was sufficient to effectively reduce CPRC cell proliferation in vitro and to abolish xenograft tumor growth in vivo Taken together, our findings establish CCN3 as a pivotal regulator of AR signaling and prostate cancer progression and suggest a functional intersection between Polycomb and AR signaling in CRPC. Cancer Res; 77(2); 412-22. ©2016 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。