MEMS Microphone Array Sensor for Air-Coupled Impact-Echo

用于空气耦合冲击回声的 MEMS 麦克风阵列传感器

阅读:3
作者:Robin Groschup, Christian U Grosse

Abstract

Impact-Echo (IE) is a nondestructive testing technique for plate like concrete structures. We propose a new sensor concept for air-coupled IE measurements. By using an array of MEMS (micro-electro-mechanical system) microphones, instead of a single receiver, several operational advantages compared to conventional sensing strategies in IE are achieved. The MEMS microphone array sensor is cost effective, less sensitive to undesired effects like acoustic noise and has an optimized sensitivity for signals that need to be extracted for IE data interpretation. The proposed sensing strategy is justified with findings from numerical simulations, showing that the IE resonance in plate like structures causes coherent surface displacements on the specimen under test in an area around the impact location. Therefore, by placing several MEMS microphones on a sensor array board, the IE resonance is easier to be identified in the recorded spectra than with single point microphones or contact type transducers. A comparative measurement between the array sensor, a conventional accelerometer and a measurement microphone clearly shows the suitability of MEMS type microphones and the advantages of using these microphones in an array arrangement for IE. The MEMS microphone array will make air-coupled IE measurements faster and more reliable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。