The Application of a Commercially Available Citrus-Based Extract Mitigates Moderate NaCl-Stress in Arabidopsis thaliana Plants

使用市售柑橘提取物缓解拟南芥植物的中度 NaCl 胁迫

阅读:11
作者:Johannes Loubser, Paul Hills

Aims

The aim of this study was to assess the effect of BC204 as a plant biostimulant on Arabidopsis thaliana plants under normal and NaCl-stressed conditions.

Conclusions

BC204 stimulated plant growth under normal growth conditions by increasing above-ground shoot tissue and root and shoot growth in vitro. BC204 also increased chlorophyll content while reducing stomatal conductivity. BC204 furthermore mitigated moderate to severe salt stress (10-20 dS·m-1) in A. thaliana. Under salt stress conditions, BC204 reduced the levels of proline, anthocyanin and malondialdehyde. The exact mechanism by which this occurs is unknown, but the results in this study suggest that BC204 may act as a priming agent, stimulating the expression of genes such as SOS1 and RD29A.

Methods

For this study, ex vitro and in vitro growth experiments were conducted to assess the effect of both NaCl and BC204 on basic physiological parameters such as biomass, chlorophyll, proline, malondialdehyde, stomatal conductivity, Fv/Fm and the expression of four NaCl-responsive genes.

Results

This study provides preliminary evidence that BC204 mitigates salt stress in Arabidopsis thaliana. BC204 treatment increased chlorophyll content, fresh and dry weights, whilst reducing proline, anthocyanin and malondialdehyde content in the presence of 10 dS·m-1 electroconductivity (EC) salt stress. Stomatal conductivity was also reduced by BC204 and NaCl in source leaves. In addition, BC204 had a significant effect on the expression of salinity-related genes, stimulating the expression of salinity-related genes RD29A and SOS1 independently of NaCl-stress. Conclusions: BC204 stimulated plant growth under normal growth conditions by increasing above-ground shoot tissue and root and shoot growth in vitro. BC204 also increased chlorophyll content while reducing stomatal conductivity. BC204 furthermore mitigated moderate to severe salt stress (10-20 dS·m-1) in A. thaliana. Under salt stress conditions, BC204 reduced the levels of proline, anthocyanin and malondialdehyde. The exact mechanism by which this occurs is unknown, but the results in this study suggest that BC204 may act as a priming agent, stimulating the expression of genes such as SOS1 and RD29A.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。