Are batch effects still relevant in the age of big data?

在大数据时代,批次效应是否仍然重要?

阅读:7
作者:Wilson Wen Bin Goh, Chern Han Yong, Limsoon Wong

Abstract

Batch effects (BEs) are technical biases that may confound analysis of high-throughput biotechnological data. BEs are complex and effective mitigation is highly context-dependent. In particular, the advent of high-resolution technologies such as single-cell RNA sequencing presents new challenges. We first cover how BE modeling differs between traditional datasets and the new data landscape. We also discuss new approaches for measuring and mitigating BEs, including whether a BE is significant enough to warrant correction. Even with the advent of machine learning and artificial intelligence, the increased complexity of next-generation biotechnological data means increased complexities in BE management. We forecast that BEs will not only remain relevant in the age of big data but will become even more important.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。