Cyclin-dependent kinase 3-mediated activating transcription factor 1 phosphorylation enhances cell transformation

细胞周期蛋白依赖性激酶 3 介导的激活转录因子 1 磷酸化增强细胞转化

阅读:4
作者:Duo Zheng, Yong-Yeon Cho, Andy T Y Lau, Jishuai Zhang, Wei-Ya Ma, Ann M Bode, Zigang Dong

Abstract

Cyclin-dependent kinase (cdk)-3, a member of the cdk family of kinases, plays a critical role in cell cycle regulation and is involved in G(0)-G(1) and G(1)-S cell cycle transitions. However, the role of cdk3 in cell proliferation, as well as cell transformation, is not yet clearly understood. Here, we report that the protein expression level of cdk3 is higher in human cancer cell lines and human glioblastoma tissue compared with normal brain tissue. Furthermore, we found that cdk3 phosphorylates activating transcription factor 1 (ATF1) at serine 63 and enhances the transactivation and transcriptional activities of ATF1. Results also indicated that siRNA directed against cdk3 (si-cdk3) suppresses ATF1 activity, resulting in inhibition of proliferation and growth of human glioblastoma T98G cells in soft agar. Importantly, we showed that cdk3 enhances epidermal growth factor-induced transformation of JB6 Cl41 cells and si-cdk3 suppresses Ras(G12V)/cdk3/ATF1-induced foci formation in NIH3T3 cells. These results clearly showed that the cdk3-ATF1 signaling axis is critical for cell proliferation and transformation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。