Nanopore Guided Annotation of Transcriptome Architectures

纳米孔引导的转录组结构注释

阅读:10
作者:Jonathan S Abebe, Yasmine Alwie, Erik Fuhrmann, Jonas Leins, Julia Mai, Ruth Verstraten, Sabrina Schreiner, Angus C Wilson, Daniel P Depledge

Abstract

High-resolution annotations of transcriptomes from all domains of life are essential for many sequencing-based RNA analyses, including Nanopore direct RNA sequencing (DRS), which would otherwise be hindered by misalignments and other analysis artefacts. DRS allows the capture and full-length sequencing of native RNAs, without recoding or amplification bias, and resulting data may be interrogated to define the identity and location of chemically modified ribonucleotides, as well as the length of poly(A) tails on individual RNA molecules. Existing software solutions for generating high-resolution transcriptome annotations are poorly suited to small gene dense organisms such as viruses due to the challenge of identifying distinct transcript isoforms where alternative splicing and overlapping RNAs are prevalent. To resolve this, we identified key characteristics of DRS datasets and developed a novel approach to transcriptome. We demonstrate, using a combination of synthetic and original datasets, that our novel approach yields a high level of precision and recall when reconstructing both gene sparse and gene dense transcriptomes from DRS datasets. We further apply this approach to generate a new high resolution transcriptome annotation of the neglected pathogen human adenovirus type F 41 for which we identify 77 distinct transcripts encoding at least 23 different proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。