Multinary Tetrahedrite (Cu12- x- yMxNySb4S13) Nanoparticles: Tailoring Thermal and Optical Properties with Copper-Site Dopants

多元四面体矿 (Cu12- x- yMxNySb4S13) 纳米粒子:利用铜位掺杂剂调节热学和光学性质

阅读:10
作者:Jacob E Daniel, Christian M Jesby, Katherine E Plass, Mary E Anderson

Abstract

Tetrahedrite (Cu12Sb4S13) is an earth-abundant and nontoxic compound with prospective applications in green energy technologies such as thermoelectric waste heat recycling or photovoltaic power generation. A facile, one-pot solution-phase modified polyol method has been developed that produces high-purity nanoscale tetrahedrite products with exceptional stoichiometric and phase control. This modified polyol method is used here to produce phase-pure quaternary and quintenary tetrahedrite nanoparticles doped on the Cu-site with Zn, Fe, Ni, Mn, or Co. This is the first time that Cu-site codoped quintenary tetrahedrite and Mn-doped quaternary tetrahedrite have been produced by a solution-phase method. X-ray diffraction shows phase-pure tetrahedrite, while scanning and transmission electron microscopy show the size and morphology of the nanomaterials. Energy dispersive X-ray spectroscopy confirms nanoparticles have near-stoichiometric elemental compositions. Thermal stability of quintenary codoped tetrahedrite material is analyzed using thermogravimetric analysis, finding that codoping with Mn, Fe, Ni, and Zn increased thermal stability while codoping with cobalt decreased thermal stability. This is the first systematic study of the optical properties of quaternary and quintenary tetrahedrite nanoparticles doped on the Cu-site. Visible-NIR diffuse reflectance spectroscopy reveals that the quaternary and quintenary tetrahedrite nanoparticles have direct optical band gaps ranging from 1.88 to 2.04 eV. Data from thermal and optical characterization support that codoped tetrahedrite nanoparticles are composed of quintenary grains. This research seeks to enhance understanding of the material properties of tetrahedrite, leading to the optimization of sustainable, nontoxic, and high-performance photovoltaic and thermoelectric materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。