Variable Dose Rates in Realistic Radiation Exposures: Effects on Small Molecule Markers of Ionizing Radiation in the Murine Model

真实辐射暴露中不同剂量率对小鼠模型中电离辐射小分子标记物的影响

阅读:2
作者:Evan L Pannkuk ,Evagelia C Laiakis ,Guy Garty ,Brian Ponnaiya ,Xuefeng Wu ,Igor Shuryak ,Shanaz A Ghandhi ,Sally A Amundson ,David J Brenner ,Albert J Fornace

Abstract

Novel biodosimetry assays for use in preparedness and response to potential malicious attacks or nuclear accidents would ideally provide accurate dose reconstruction independent of the idiosyncrasies of a complex exposure to ionizing radiation. Complex exposures will consist of dose rates spanning the low dose rates (LDR) to very high-dose rates (VHDR) that need to be tested for assay validation. Here, we investigate how a range of relevant dose rates affect metabolomic dose reconstruction at potentially lethal radiation exposures (8 Gy in mice) from an initial blast or subsequent fallout exposures compared to zero or sublethal exposures (0 or 3 Gy in mice) in the first 2 days, which corresponds to an integral time individuals will reach medical facilities after a radiological emergency. Biofluids (urine and serum) were collected from both male and female 9-10-week-old C57BL/6 mice at 1 and 2 days postirradiation (total doses of 0, 3 or 8 Gy) after a VHDR of 7 Gy/s. Additionally, samples were collected after a 2-day exposure consisting of a declining dose rate (1 to 0.004 Gy/min) recapitulating the 7:10 rule-of-thumb time dependency of nuclear fallout. Overall similar perturbations were observed in both urine and serum metabolite concentrations irrespective of sex or dose rate, with the exception of xanthurenic acid in urine (female specific) and taurine in serum (VHDR specific). In urine, we developed identical multiplex metabolite panels (N6, N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, and taurine) that could identify individuals receiving potentially lethal levels of radiation from the zero or sublethal cohorts with excellent sensitivity and specificity, with creatine increasing model performance at day 1. In serum, individuals receiving a 3 or 8 Gy exposure could be identified from their pre-irradiation samples with excellent sensitivity and specificity, however, due to a lower dose response the 3 vs. 8 Gy groups could not be distinguished from each other. Together with previous results, these data indicate that dose-rate-independent small molecule fingerprints have potential in novel biodosimetry assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。