Conclusions
Taurine supplementation restored the microbiota balance, strengthened the mucosal barrier, reduced intestinal inflammation, and stimulated tryptophan metabolism. The metabolites derived from the gut microbiota likely crossed the brain barrier and reached the paraventricular nucleus, thereby reducing the inflammatory responses and oxidative stress in the PVN via gut-brain communication, leading to decreased sympathetic nerve activity and blood pressure in the studied hypertensive rats.
Results
Taurine supplementation not only reduced the blood pressure, sympathetic activity, and inflammatory and oxidative stress in the PVN but also improved the cardiac pathology and microbiota composition while alleviating gut inflammation in hypertensive rats. The untargeted metabolite analysis indicated that the primary effect of the taurine intervention in SHRs was exerted on tryptophan metabolism. The levels of serum metabolites such as kynurenine, L-tryptophan, serotonin (5-HT), and 5-hydroxyindole-3-acetic acid (5-HIAA) were altered in hypertensive rats following taurine treatment. Conclusions: Taurine supplementation restored the microbiota balance, strengthened the mucosal barrier, reduced intestinal inflammation, and stimulated tryptophan metabolism. The metabolites derived from the gut microbiota likely crossed the brain barrier and reached the paraventricular nucleus, thereby reducing the inflammatory responses and oxidative stress in the PVN via gut-brain communication, leading to decreased sympathetic nerve activity and blood pressure in the studied hypertensive rats.
