Fingerprinting closely related xanthomonas pathovars with random nonamer oligonucleotide microarrays

利用随机非聚体寡核苷酸微阵列对密切相关的黄单胞菌病原体进行指纹识别

阅读:5
作者:Mark T Kingsley, Timothy M Straub, Douglas R Call, Don S Daly, Sharon C Wunschel, Darrell P Chandler

Abstract

Current bacterial DNA-typing methods are typically based on gel-based fingerprinting methods. As such, they access a limited complement of genetic information and many independent restriction enzymes or probes are required to achieve statistical rigor and confidence in the resulting pattern of DNA fragments. Furthermore, statistical comparison of gel-based fingerprints is complex and nonstandardized. To overcome these limitations of gel-based microbial DNA fingerprinting, we developed a prototype, 47-probe microarray consisting of randomly selected nonamer oligonucleotides. Custom image analysis algorithms and statistical tools were developed to automatically extract fingerprint profiles from microarray images. The prototype array and new image analysis algorithms were used to analyze 14 closely related Xanthomonas pathovars. Of the 47 probes on the prototype array, 10 had diagnostic value (based on a chi-squared test) and were used to construct statistically robust microarray fingerprints. Analysis of the microarray fingerprints showed clear differences between the 14 test organisms, including the separation of X. oryzae strains 43836 and 49072, which could not be resolved by traditional gel electrophoresis of REP-PCR amplification products. The proof-of-application study described here represents an important first step to high-resolution bacterial DNA fingerprinting with microarrays. The universal nature of the nonamer fingerprinting microarray and data analysis methods developed here also forms a basis for method standardization and application to the forensic identification of other closely related bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。