Strigolactone Alleviates the Adverse Effects of Salt Stress on Seed Germination in Cucumber by Enhancing Antioxidant Capacity

独脚金内酯通过增强抗氧化能力减轻盐胁迫对黄瓜种子发芽的不利影响

阅读:6
作者:Changxia Li, Xuefang Lu, Yunzhi Liu, Junrong Xu, Wenjin Yu

Abstract

Strigolactones (SLs), as a new phytohormone, regulate various physiological and biochemical processes, and a number of stress responses, in plants. In this study, cucumber 'Xinchun NO. 4' is used to study the roles of SLs in seed germination under salt stress. The results show that the seed germination significantly decreases with the increase in the NaCl concentrations (0, 1, 10, 50, and 100 mM), and 50 mM NaCl as a moderate stress is used for further analysis. The different concentrations of SLs synthetic analogs GR24 (1, 5, 10, and 20 μM) significantly promote cucumber seed germination under NaCl stress, with a maximal biological response at 10 μM. An inhibitor of strigolactone (SL) synthesis TIS108 suppresses the positive roles of GR24 in cucumber seed germination under salt stress, suggesting that SL can alleviate the inhibition of seed germination caused by salt stress. To explore the regulatory mechanism of SL-alleviated salt stress, some contents, activities, and genes related to the antioxidant system are measured. The malondialdehyde (MDA), H2O2, O2-, and proline contents are increased, and the levels of ascorbic acid (AsA) and glutathione (GSH) are decreased under salt stress conditions, while GR24 treatment reduces MDA, H2O2, O2-, and proline contents, and increases AsA and GSH contents during seed germination under salt stress. Meanwhile, GR24 treatment enhances the decrease in the activities of antioxidant enzymes caused by salt stress [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX)], following which antioxidant-related genes SOD, POD, CAT, APX, and GRX2 are up-regulated by GR24 under salt stress. However, TIS108 reversed the positive effects of GR24 on cucumber seed germination under salt stress. Together, the results of this study revealed that GR24 regulates the expression levels of genes related to antioxidants and, therefore, regulates enzymatic activity and non-enzymatic substances and enhances antioxidant capacity, alleviating salt toxicity during seed germination in cucumber.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。