Abstract
Ubiquitin-mediated endocytosis and post-endocytic trafficking of glutamate receptors control their synaptic abundance and are implicated in modulating synaptic strength. Ubiquitination is a reversible modification, but the identities and specific functions of deubiquitinating enzymes in the nervous system are lacking. Here, we show that the deubiquitinating enzyme ubiquitin-specific protease-46 (USP-46) regulates the abundance of the glutamate receptor GLR-1 in the ventral nerve cord of Caenorhabditis elegans. Mutants lacking usp-46 have decreased GLR-1 in the ventral nerve cord and corresponding defects in GLR-1-dependent behaviors. The amount of ubiquitinated GLR-1 is increased in usp-46 mutants. Mutations that block GLR-1 ubiquitination or receptor degradation in the multi-vesicular body/lysosome prevent the decrease in GLR-1 observed in usp-46 mutants. These data support a model in which USP-46 promotes GLR-1 abundance at synapses by deubiquitinating GLR-1 and preventing its degradation in the lysosome. This work suggests that the balance between the addition and removal of ubiquitin is important for glutamate receptor trafficking.
