Electroacupuncture Exerts Chondroprotective Effect in Knee Osteoarthritis of Rabbits Through the Mitophagy Pathway

电针通过线粒体自噬途径对兔膝骨关节炎发挥软骨保护作用

阅读:4
作者:Longfei Xing #, Xilin Chen #, Changqing Guo, Wenting Zhu, Tingyao Hu, Weiwei Ma, Mei Du, Yue Xu, Changqing Guo

Conclusion

EA may play a role in protecting KOA cartilage by activating mitophagy mediated through Pink1-Parkin pathway.

Methods

The rabbits were divided into 3 groups, Control group, KOA group, EA group, with 6 rabbits in each group. KOA model rabbits were established by modified Videman's extended immobilization method for 6 weeks and randomly divided into KOA group and EA group. The rabbits in EA group were treated every other day for 3 weeks. The degree of cartilage degeneration was detected by Safranine O-Fast Green staining and immunofluorescence. The morphological changes of chondrocytes mitochondria were detected by transmission electron microscope. ATP concentration in cartilage was measured by ATP Assay Kit. The changes of Pink1-Parkin signal pathway were detected by immunofluorescence, Western blot, and Real-time PCR.

Purpose

Mitochondrial dysfunction of chondrocytes has become an area of focus in Knee Osteoarthritis (KOA) in recent years. Activation of mitophagy could promote the survival of chondrocytes and alleviate cartilage degeneration. The aim of this study was to explore whether mitophagy was involved in the cartilage protection of KOA rabbits after electroacupuncture (EA) intervention.

Results

The morphology showed that EA could reduce the degeneration of KOA cartilage and increase the distribution of collagen II. We also found that EA could activate mitophagy in KOA rabbit chondrocytes to remove damaged mitochondria and restore mitochondrial homeostasis, which was manifested as increasing the expression of LC3 II/I, promoting the colocalization of TOM20 and LC3B, reducing the accumulation of mitochondrial markers outer mitochondrial membrane 20 (TOM20) and inner mitochondrial membrane 23 (TIM23), and increasing ATP production in chondrocytes. This regulation might be achieved by upregulating the Pink1-Parkin signal pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。