Endothelial TGF-β Signaling Regulates Endothelial-Mesenchymal Transition During Arteriovenous Fistula Remodeling in Mice With Chronic Kidney Disease

内皮 TGF-β 信号调节慢性肾病小鼠动静脉瘘重塑过程中的内皮-间质转化

阅读:5
作者:Weichang Zhang, Luis Gonzalez, Xin Li, Hualong Bai, Zhuo Li, Ryosuke Taniguchi, John Langford, Yuichi Ohashi, Carly Thaxton, Yukihiko Aoyagi, Bogdan Yatsula, Kathleen A Martin, Julie Goodwin, George Tellides, Xiaochun Long, Chang Shu, Alan Dardik

Background

Arteriovenous fistulae (AVF) are the preferred vascular access for hemodialysis in patients with end-stage kidney disease. Chronic kidney disease (CKD) is associated with endothelial injury, impaired AVF maturation, and reduced patency, as well as utilization. Because CKD is characterized by multiple pathophysiological processes that induce endothelial-to-mesenchymal transition (EndMT), we hypothesized that CKD promotes EndMT during venous remodeling and that disruption of endothelial TGF (transforming growth factor)-β signaling inhibits EndMT to prevent AVF failure even in the end-stage kidney disease environment.

Conclusions

CKD promotes EndMT and reduces AVF patency. Inhibition of TGF-β signaling, especially disruption of endothelial cell-specific TGF-β signaling, attenuates EndMT and improves AVF patency in mouse AVF. Inhibition of EndMT may be a therapeutic approach of translational significance to improve AVF patency in human patients with CKD.

Methods

The mouse 5/6 nephrectomy and aortocaval fistula models were used. CKD was created via 5/6 nephrectomy, with controls of no (0/6) or partial (3/6) nephrectomy in C57BL/6J mice. AVF were created in mice with knockdown of TGF-βR1/R2 (TGF-β receptors type 1/2) in either smooth muscle cells or endothelial cells. AVF diameters and patency were measured and confirmed by serial ultrasound examination. AVF, both murine and human, were examined using Western blot, histology, and immunofluorescence. Human and mouse endothelial cells were used for in vitro experiments.

Results

CKD accelerates TGF-β activation and promotes EndMT that is associated with increased AVF wall thickness and reduced patency in mice. Inhibition of TGF-β signaling in both endothelial cells and smooth muscle cells decreased smooth muscle cell proliferation in the AVF wall, attenuated EndMT, and was associated with reduced wall thickness, increased outward remodeling, and improved AVF patency. Human AVF also showed increased TGF-β signaling and EndMT. Conclusions: CKD promotes EndMT and reduces AVF patency. Inhibition of TGF-β signaling, especially disruption of endothelial cell-specific TGF-β signaling, attenuates EndMT and improves AVF patency in mouse AVF. Inhibition of EndMT may be a therapeutic approach of translational significance to improve AVF patency in human patients with CKD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。