Identification of hACE2-interacting sites in SARS-CoV-2 spike receptor binding domain for antiviral drugs screening

鉴定 SARS-CoV-2 刺突受体结合域中的 hACE2 相互作用位点以用于抗病毒药物筛选

阅读:6
作者:Xiaopeng Hu, Jiahua Cui, Jun Chen, Shujuan Du, Xinyu Wang, Yabin Zhang, Jiajun Qian, Haifeng Chen, Fang Wei, Qiliang Cai, Jinping Jia, Ji Wu

Abstract

The key structure of the interface between the spike protein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and human angiotensin-converting enzyme 2 (hACE2) acts as an essential switch for cell entry by the virus and drugs targets. However, this is largely unknown. Here, we tested three peptides of spike receptor binding domain (RBD) and found that peptide 391-465 aa is the major hACE2-interacting sites in SARS-CoV-2 spike RBD. We then identified essential amino acid residues (403R, 449Y, 454R) of peptide 391-465 aa that were critical for the interaction between the RBD and hACE2. Additionally, a pseudotyped virus containing SARS-CoV-2 spike with individual mutation (R454G, Y449F, R403G, N439I, or N440I) was determined to have very low infectivity compared with the pseudotyped virus containing the wildtype (WT) spike from reference strain Wuhan 1, respectively. Furthermore, we showed the key amino acids had the potential to drug screening. For example, molecular docking (Docking) and infection assay showed that Cephalosporin derivatives can bind with the key amino acids to efficiently block infection of the pseudoviruses with wild type spike or new variants. Moreover, Cefixime inhibited live SARS-CoV-2 infection. These results also provide a novel model for drug screening and support further clinical evaluation and development of Cephalosporin derivatives as novel, safe, and cost-effective drugs for prevention/treatment of SARS-CoV-2.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。