Obesity modulates hematopoietic stem cell fate decision via IL-1β induced p38/MAPK signaling pathway

肥胖通过 IL-1β 诱导的 p38/MAPK 信号通路调节造血干细胞命运决定

阅读:5
作者:Jinxiao Yan #, Pan Zhang #, Xiru Liu, Chengwei Pan, Guolin Shi, Penghui Ye, Xiaohang Zou, Xiang Li, Xinmin Zheng, Yu Liu, Hui Yang

Background

Obesity is accompanied by inflammation, which significantly affects the homeostasis of the immune microenvironment. Hematopoietic stem cells (HSCs), residing primarily in the bone marrow, play a vital role in maintaining and producing diverse mature blood cell lineages for the adult hematopoietic and immune systems. However, how HSCs development is affected by obese-promoting inflammation, and the mechanism by which HSC hematopoietic potency is affected by inflammatory signals originating from the obese-promoting changes on bone marrow niche remain unclear. This study elucidates the relationship between obesity-promoting inflammation and HSC fate determination.

Conclusions

These findings have been demonstrated that the p38/MAPK signaling pathway in HSCs is activated by elevated levels of IL-1β within the HSC niche in obese models, thereby regulating HSC differentiation. It suggested a direct link between obesity-promoting inflammation and myeloid differentiation bias of HSCs in the HFD mice.

Methods

The obesity mice model was established by feeding C57BL/6J mice a high-fat diet (HFD) containing 60% kcal fat. After 6 weeks, HSCs were analyzed using flow cytometry and identified key inflammation cytokine. Transcriptome sequencing techniques were used to discern the distinct pathways in HSCs. Ultimately, confirming the biological mechanism of obesity-induced HSC fate changes via Anakinra blocking specific inflammatory signals.

Results

Obesity caused by HFD changed the physical and biochemical properties of the bone marrow niche. In the HFD mice, the population of long-term HSCs in the bone marrow was decreased and facilitated HSCs differentiation towards the myeloid lineage. In addition, HFD increased expression of the inflammatory factor IL-1β in the bone marrow, and a significantly increased expression of IL-1r1 and active p38/MAPK signaling pathway were detected in the HSCs. Inhibition of IL-1β further normalized the expression of genes in p38/MAPK pathway and reversed HSC fate. Conclusions: These findings have been demonstrated that the p38/MAPK signaling pathway in HSCs is activated by elevated levels of IL-1β within the HSC niche in obese models, thereby regulating HSC differentiation. It suggested a direct link between obesity-promoting inflammation and myeloid differentiation bias of HSCs in the HFD mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。