Abstract
Background:
Obesity is accompanied by inflammation, which significantly affects the homeostasis of the immune microenvironment. Hematopoietic stem cells (HSCs), residing primarily in the bone marrow, play a vital role in maintaining and producing diverse mature blood cell lineages for the adult hematopoietic and immune systems. However, how HSCs development is affected by obese-promoting inflammation, and the mechanism by which HSC hematopoietic potency is affected by inflammatory signals originating from the obese-promoting changes on bone marrow niche remain unclear. This study elucidates the relationship between obesity-promoting inflammation and HSC fate determination.
Methods:
The obesity mice model was established by feeding C57BL/6J mice a high-fat diet (HFD) containing 60% kcal fat. After 6 weeks, HSCs were analyzed using flow cytometry and identified key inflammation cytokine. Transcriptome sequencing techniques were used to discern the distinct pathways in HSCs. Ultimately, confirming the biological mechanism of obesity-induced HSC fate changes via Anakinra blocking specific inflammatory signals.
Results:
Obesity caused by HFD changed the physical and biochemical properties of the bone marrow niche. In the HFD mice, the population of long-term HSCs in the bone marrow was decreased and facilitated HSCs differentiation towards the myeloid lineage. In addition, HFD increased expression of the inflammatory factor IL-1β in the bone marrow, and a significantly increased expression of IL-1r1 and active p38/MAPK signaling pathway were detected in the HSCs. Inhibition of IL-1β further normalized the expression of genes in p38/MAPK pathway and reversed HSC fate.
Conclusions:
These findings have been demonstrated that the p38/MAPK signaling pathway in HSCs is activated by elevated levels of IL-1β within the HSC niche in obese models, thereby regulating HSC differentiation. It suggested a direct link between obesity-promoting inflammation and myeloid differentiation bias of HSCs in the HFD mice.
