Odontoblasts release exosomes to regulate the odontoblastic differentiation of dental pulp stem cells

成牙本质细胞释放外泌体调控牙髓干细胞的成牙本质分化

阅读:4
作者:Xinghong Luo #, Weiqing Feng #, Shijiang Huang #, Shenghong Miao, Tao Jiang, Qian Lei, Jingyao Yin, Sheng Zhang, Xiaochun Bai, Chunbo Hao, Weizhong Li, Dandan Ma

Background

Dental pulp stem cells (DPSCs) play a crucial role in dentin-pulp complex regeneration. Further understanding of the mechanism by which DPSCs remain in a quiescent state could contribute to improvements in the dentin-pulp complex and dentinogenesis.

Conclusion

mTORC1 regulates exosome release from odontoblasts to inhibit the odontoblastic differentiation of DPSCs, but it does not alter exosomal contents. These findings might provide a new understanding of dental pulp complex regeneration.

Methods

TSC1 conditional knockout (DMP1-Cre+; TSC1f/f, hereafter CKO) mice were generated to increase the activity of mechanistic target of rapamycin complex 1 (mTORC1). H&E staining, immunofluorescence and micro-CT analysis were performed with these CKO mice and littermate controls. In vitro, exosomes were collected from the supernatants of MDPC23 cells with different levels of mTORC1 activity and then characterized by transmission electron microscopy and nanoparticle tracking analysis. DPSCs were cocultured with MDPC23 cells and MDPC23 cell-derived exosomes. Alizarin Red S staining, ALP staining, qRT‒PCR, western blotting analysis and micro-RNA sequencing were performed.

Results

Our study showed that mTORC1 activation in odontoblasts resulted in thicker dentin and higher dentin volume/tooth volume of molars, and it increased the expression levels of the exosome markers CD63 and Alix. In vitro, when DPSCs were cocultured with MDPC23 cells, odontoblastic differentiation was inhibited. However, the inhibition of odontoblastic differentiation was reversed when DPSCs were cocultured with MDPC23 cells with mTORC1 overactivation. To further study the effects of mTORC1 on exosome release from odontoblasts, MDPC23 cells were treated with rapamycin or shRNA-TSC1 to inactivate or activate mTORC1, respectively. The results revealed that exosome release from odontoblasts was negatively correlated with mTORC1 activity. Moreover, exosomes derived from MDPC23 cells with active or inactive mTORC1 inhibited the odontoblastic differentiation of DPSCs at the same concentration. miRNA sequencing analysis of exosomes that were derived from shTSC1-transfected MDPC23 cells, rapamycin-treated MDPC23 cells or nontreated MDPC23 cells revealed that the majority of the miRNAs were similar among these groups. In addition, exosomes derived from odontoblasts inhibited the odontoblastic differentiation of DPSCs, and the inhibitory effect was positively correlated with exosome concentration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。