An Integrated In Silico and In Vivo Approach to Identify Protective Effects of Palonosetron in Cisplatin-Induced Nephrotoxicity

采用计算机和体内综合方法鉴定帕洛诺司琼对顺铂诱导的肾毒性的保护作用

阅读:6
作者:Eri Wakai, Yuya Suzumura, Kenji Ikemura, Toshiro Mizuno, Masatoshi Watanabe, Kazuhiko Takeuchi, Yuhei Nishimura

Abstract

Cisplatin is widely used to treat various types of cancers, but it is often limited by nephrotoxicity. Here, we employed an integrated in silico and in vivo approach to identify potential treatments for cisplatin-induced nephrotoxicity (CIN). Using publicly available mouse kidney and human kidney organoid transcriptome datasets, we first identified a 208-gene expression signature for CIN and then used the bioinformatics database Cmap and Lincs Unified Environment (CLUE) to identify drugs expected to counter the expression signature for CIN. We also searched the adverse event database, Food and Drug Administration. Adverse Event Reporting System (FAERS), to identify drugs that reduce the reporting odds ratio of developing cisplatin-induced acute kidney injury. Palonosetron, a serotonin type 3 receptor (5-hydroxytryptamine receptor 3 (5-HT3R)) antagonist, was identified by both CLUE and FAERS analyses. Notably, clinical data from 103 patients treated with cisplatin for head and neck cancer revealed that palonosetron was superior to ramosetron in suppressing cisplatin-induced increases in serum creatinine and blood urea nitrogen levels. Moreover, palonosetron significantly increased the survival rate of zebrafish exposed to cisplatin but not to other 5-HT3R antagonists. These results not only suggest that palonosetron can suppress CIN but also support the use of in silico and in vivo approaches in drug repositioning studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。