Adipose-derived cellular therapies prolong graft survival in an allogenic hind limb transplantation model

脂肪来源的细胞疗法延长同种异体后肢移植模型中的移植物存活率

阅读:6
作者:Jingting Chen #, Yinmin Wang #, Haoyue Hu, Yao Xiong, Shoubao Wang, Jun Yang

Background

The long-term survival after vascularized composite allotransplantation (VCA) is often limited by systemic rejection as well as the adverse effects of immunosuppressants. The stromal vascular fraction (SVF) can be expanded to produce adipose-derived stem cells (ADSC) which represents a combination of endothelial cells, preadipocytes, immune cells, and ADSC. It has been demonstrated that ADSC possess consistently reliable clinical

Conclusion

These studies demonstrated that adipose-derived cellular therapies prolong graft survival in an allogenic hind limb transplantation model and have the potential to establish immunotolerance.

Methods

A rat hind limb allotransplant model was used to investigate the influence of ex vivo pretreatment of SVF and ADSC on VCA survival. Intravascular cell-free saline, ADSC, or SVF was infused into the models with immunosuppressants. The histopathological examination and duration that the allografts went without displaying symptoms of rejection was documented. Peripheral T lymphocytes and Tregs were quantified with flow cytometry while allotissue expressions of CD31 were quantified with immunohistochemical staining (IHC). ELISA was used to detect vascular endothelial growth factor (VEGF)-A as well as anti- and pro-inflammatory cytokines.

Results

We demonstrated that ex vivo treatment of allografts with SVF or ADSC prolonged allograft survival in contrast to medium control cohorts. There were also enhanced levels of immunomodulatory cytokines and increased VEGF-A and CD31 expression as well as reduced infiltration and proliferation of T lymphocytes along with raised Treg expressions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。