Chemicals orchestrate reprogramming with hierarchical activation of master transcription factors primed by endogenous Sox17 activation

化学物质通过内源性 Sox17 激活引发的主转录因子的分级激活来协调重编程

阅读:5
作者:Zhenghao Yang, Xiaochan Xu, Chan Gu, Jun Li, Qihong Wu, Can Ye, Alexander Valentin Nielsen, Lichao Mao, Junqing Ye, Ke Bai, Fan Guo, Chao Tang, Yang Zhao3

Abstract

Mouse somatic cells can be chemically reprogrammed into pluripotent stem cells (CiPSCs) through an intermediate extraembryonic endoderm (XEN)-like state. However, it is elusive how the chemicals orchestrate the cell fate alteration. In this study, we analyze molecular dynamics in chemical reprogramming from fibroblasts to a XEN-like state. We find that Sox17 is initially activated by the chemical cocktails, and XEN cell fate specialization is subsequently mediated by Sox17 activated expression of other XEN master genes, such as Sall4 and Gata4. Furthermore, this stepwise process is differentially regulated. The core reprogramming chemicals CHIR99021, 616452 and Forskolin are all necessary for Sox17 activation, while differently required for Gata4 and Sall4 expression. The addition of chemical boosters in different phases further improves the generation efficiency of XEN-like cells. Taken together, our work demonstrates that chemical reprogramming is regulated in 3 distinct "prime-specify-transit" phases initiated with endogenous Sox17 activation, providing a new framework to understand cell fate determination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。