Fluorine-18-Labeled Thymidine Positron Emission Tomography (FLT-PET) as an Index of Cell Proliferation after Pharmacological Ascorbate-Based Therapy

氟-18标记胸苷正电子发射断层扫描(FLT-PET)作为药物抗坏血酸治疗后细胞增殖的指标

阅读:6
作者:John A Cieslak, Zita A Sibenaller, Susan A Walsh, Laura L Boles Ponto, Juan Du, John J Sunderland, Joseph J Cullen

Abstract

Pharmacological ascorbate (AscH(-)) induces cytotoxicity and oxidative stress selectively in pancreatic cancer cells compared with normal cells. Positron emission tomography (PET) with the thymidine analog 3'-deoxy-3'-((18)F) fluorothymidine (FLT) enables noninvasive imaging and quantification of the proliferation fraction of tumors. We hypothesized that the rate of tumor proliferation determined by FLT-PET imaging, would be inversely proportional to tumor susceptibility to pharmacological AscH(-)-based treatments. Indeed, there was decreased FLT uptake in human pancreatic cancer cells treated with AscH(-) in vitro, and this effect was abrogated by co-treatment with catalase. In separate experiments, cells were treated with AscH(-), ionizing radiation or a combination of both. These studies demonstrated that combined AscH(-) and radiation treatment resulted in a significant decrease in FLT uptake that directly correlated with decreased clonogenic survival. MicroPET (18)F-FLT scans of mice with pre-established tumors demonstrated that AscH(-) treatment induced radiosensitization compared to radiation treatment alone. These data support testing of pharmacological ascorbate as a radiosensitizer in pancreatic cancer as well as the use of FLT-PET to monitor response to therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。