Comparative multi-omics analyses reveal differential expression of key genes relevant for parasitism between non-encapsulated and encapsulated Trichinella

比较多组学分析揭示无荚膜和有荚膜旋毛虫寄生相关关键基因的差异表达

阅读:14
作者:Xiaolei Liu #, Yayan Feng #, Xue Bai, Xuelin Wang, Rui Qin, Bin Tang, Xinxin Yu, Yong Yang, Mingyuan Liu, Fei Gao

Abstract

Genome assemblies provide a powerful basis of comparative multi-omics analyses that offer insight into parasite pathogenicity, host-parasite interactions, and invasion biology. As a unique intracellular nematode, Trichinella consists of two clades, encapsulated and non-encapsulated. Genomic correlation of the distinct differences between the two clades is still unclear. Here, we report an annotated draft reference genome of non-encapsulated Trichinella, T. pseudospiralis, and perform comparative multi-omics analyses with encapsulated T. spiralis. Genome and methylome analyses indicate that, during Trichinella evolution, the two clades of Trichinella exhibit differential expansion and methylation of parasitism-related multi-copy gene families, especially for the DNase II members of the phospholipase D superfamily and Glutathione S-transferases. Further, methylome and transcriptome analyses revealed divergent key excretory/secretory (E/S) genes between the two clades. Among these key E/S genes, TP12446 is significantly more expressed across three life stages in T. pseudospiralis. Overexpression of TP12446 in the mouse C2C12 skeletal muscle cell line could induce inhibition of myotube formation and differentiation, further indicating its key role in parasitism of T. pseudospiralis. This multi-omics study provides a foundation for further elucidation of the mechanism of nurse cell formation and immunoevasion, as well as the identification of pharmacological and diagnostic targets of trichinellosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。