Therapeutic Actions of Hepatocyte Extracellular Vesicles in a Murine Model of Diet-Induced Steatohepatitis with Fibrosis

肝细胞外囊泡在饮食诱发的伴有纤维化的小鼠脂肪肝模型中的治疗作用

阅读:7
作者:Xinlei Li, Ruju Chen, Sherri Kemper, Zhaohui Xu, David R Brigstock

Conclusions

Hepatocyte EVs are therapeutic in a mouse model of diet-induced steatohepatitis with fibrosis. Further studies of hepatocyte EVs or their cargo components as novel therapeutics for MASH in humans are warranted, including treatment of fibrotic stages, which are associated with clinical demise and are predictive of patient death.

Methods

C57BI/6J mice were fed a choline-deficient amino acid-defined high (60%) fat (CDAA-HF) diet for up to 12 weeks while receiving i.p. administration of EVs purified from cultured human HepG2 hepatocytes.

Results

CDAA-HF diet consumption resulted in severe hepatic steatosis, increased frequency of CD45+ lymphocytes and F4/80+ macrophages, robust production of aortic smooth muscle actin (ACTA2), and deposition of interstitial collagen, as well as altered serum levels of ALT, AST, cholesterol, triglycerides, alkaline phosphatase, unconjugated bilirubin, and total protein, thus recapitulating typical MASH phenotypes. EVs administered preventively or therapeutically resulted in the restoration of serum marker levels, reduced hepatic inflammation and attenuation of collagen deposition, ACTA2 production, and expression of fibrosis-associated genes. HepG2 EVs contained 205 miRs and, among the 30 most abundant miRs, seven (miRs-423-5p, -483-5p, -191-5p, -148a-3p, -423-3p, -92a-3p, -122-5p) are predicted to directly target fibrosis-related genes (collagens, ACTA2, MMPs, and TIMPs). Conclusions: Hepatocyte EVs are therapeutic in a mouse model of diet-induced steatohepatitis with fibrosis. Further studies of hepatocyte EVs or their cargo components as novel therapeutics for MASH in humans are warranted, including treatment of fibrotic stages, which are associated with clinical demise and are predictive of patient death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。