Exposure to a Low-Oxygen Environment Causes Implantation Failure and Transcriptomic Shifts in Mouse Uteruses and Ovaries

暴露于低氧环境会导致小鼠子宫和卵巢着床失败和转录组转变

阅读:11
作者:Asmaa Y Ammar, Fatma M Minisy, Hossam H Shawki, Mohamed Mansour, Shabaan A Hemeda, Abeer F El Nahas, Ahmed H Sherif, Hisashi Oishi

Abstract

Hypoxia is a condition in which tissues of the body do not receive sufficient amounts of oxygen supply. Numerous studies have elucidated the intricate roles of hypoxia and its involvement in both physiological and pathological conditions. This study aimed to clarify the impact of a forced low-oxygen environment in early pregnancy by exposing mice to low-oxygen conditions for 24-72 h after fertilization. The treatment resulted in the complete failure of blastocyst implantation, accompanied by vascular hyperpermeability in the uterus. A transcriptome analysis of the uterus revealed remarkable alterations in gene expression between control normoxic- and hypoxic-treatment groups. These alterations were characterized by the differentially expressed genes categorized into the immune responses and iron coordination. Furthermore, exposure to a low-oxygen environment caused apoptosis in the corpus luteum within the ovary and a reduction in progesterone secretion. Consequently, diminished plasma progesterone levels were considered to contribute to implantation failure in combination with the activation of the hypoxic pathway in the uterus. Additionally, previous studies have demonstrated the impact of hypoxic reactions on blastocyst development and the pre-implantation process in the endometrium. Our findings suggest that the corpus luteum exhibits elevated susceptibility to hypoxia, thereby elucidating a critical aspect of its physiological response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。