The PGD2 pathway, independently of FGF9, amplifies SOX9 activity in Sertoli cells during male sexual differentiation

PGD2 通路独立于 FGF9,在雄性性分化过程中增强塞托利细胞中的 SOX9 活性

阅读:5
作者:Brigitte Moniot, Faustine Declosmenil, Francisco Barrionuevo, Gerd Scherer, Kosuke Aritake, Safia Malki, Laetitia Marzi, Anne Cohen-Solal, Ina Georg, Jürgen Klattig, Christoph Englert, Yuna Kim, Blanche Capel, Naomi Eguchi, Yoshihiro Urade, Brigitte Boizet-Bonhoure, Francis Poulat

Abstract

Activation by the Y-encoded testis determining factor SRY and maintenance of expression of the Sox9 gene encoding the central transcription factor of Sertoli cell differentiation are key events in the mammalian sexual differentiation program. In the mouse XY gonad, SOX9 upregulates Fgf9, which initiates a Sox9/Fgf9 feedforward loop, and Sox9 expression is stimulated by the prostaglandin D2 (PGD2) producing lipocalin prostaglandin D synthase (L-PGDS, or PTDGS) enzyme, which accelerates commitment to the male pathway. In an attempt to decipher the genetic relationships between Sox9 and the L-Pgds/PGD2 pathway during mouse testicular organogenesis, we found that ablation of Sox9 at the onset or during the time window of expression in embryonic Sertoli cells abolished L-Pgds transcription. By contrast, L-Pgds(-/-) XY embryonic gonads displayed a reduced level of Sox9 transcript and aberrant SOX9 protein subcellular localization. In this study, we demonstrated genetically that the L-Pgds/PGD2 pathway acts as a second amplification loop of Sox9 expression. Moreover, examination of Fgf9(-/-) and L-Pgds(-/-) XY embryonic gonads demonstrated that the two Sox9 gene activity amplifying pathways work independently. These data suggest that, once activated and maintained by SOX9, production of testicular L-PGDS leads to the accumulation of PGD2, which in turn activates Sox9 transcription and nuclear translocation of SOX9. This mechanism participates together with FGF9 as an amplification system of Sox9 gene expression and activity during mammalian testicular organogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。