Cytoplasmic Prep1 interacts with 4EHP inhibiting Hoxb4 translation

细胞质 Prep1 与 4EHP 相互作用抑制 Hoxb4 翻译

阅读:7
作者:J Carlos Villaescusa, Claudia Buratti, Dmitry Penkov, Lisa Mathiasen, Jesús Planagumà, Elisabetta Ferretti, Francesco Blasi

Background

Homeobox genes are essential for embryonic patterning and cell fate determination. They are regulated mostly at the transcriptional level. In particular, Prep1 regulates Hox transcription in association with Pbx proteins. Despite its nuclear role as a transcription factor, Prep1 is located in the cytosol of mouse oocytes from primary to antral follicles. The homeodomain factor Bicoid (Bcd) has been shown to interact with 4EHP (eukaryotic translation initiation factor 4E homolog protein) to repress translation of Caudal mRNA and to drive Drosophila embryo development. Interestingly, Prep1 contains a putative binding motif for 4EHP, which may reflect a novel unknown function. Methodology/principal findings: In this paper we show by confocal microscopy and deconvolution analysis that Prep1 and 4EHP co-localize in the cytosol of growing mouse oocytes, demonstrating their interaction by co-immunoprecipitation and pull-down experiments. A functional 4EHP-binding motif present in Prep1 has been also identified by mutagenesis analysis. Moreover, Prep1 inhibits (>95%) the in vitro translation of a luciferase reporter mRNA fused to the Hoxb4 3'UTR, in the presence of 4EHP. RNA electrophoretic mobility shift assay was used to demonstrate that Prep1 binds the Hoxb4 3'UTR. Furthermore, conventional histology and immunohistochemistry has shown a dramatic oocyte growth failure in hypomorphic mouse Prep1(i/i) females, accompanied by an increased production of Hoxb4. Finally, Hoxb4 overexpression in mouse zygotes showed a slow in vitro development effect. Conclusions: Prep1 has a novel cytoplasmic, 4EHP-dependent, function in the regulation of translation. Mechanistically, the Prep1-4EHP interaction might bridge the 3'UTR of Hoxb4 mRNA to the 5' cap structure. This is the first demonstration that a mammalian homeodomain transcription factor regulates translation, and that this function can be possibly essential for the development of female germ cells and involved in mammalian zygote development.

Conclusions

Prep1 has a novel cytoplasmic, 4EHP-dependent, function in the regulation of translation. Mechanistically, the Prep1-4EHP interaction might bridge the 3'UTR of Hoxb4 mRNA to the 5' cap structure. This is the first demonstration that a mammalian homeodomain transcription factor regulates translation, and that this function can be possibly essential for the development of female germ cells and involved in mammalian zygote development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。