Arterial endothelium creates a permissive niche for expansion of human cord blood hematopoietic stem and progenitor cells

动脉内皮为人类脐带血造血干细胞和祖细胞的扩增创造了一个允许的生态位

阅读:7
作者:Huilin Li, Haiyun Pei, Sihan Wang, Bowen Zhang, Zeng Fan, Yiming Liu, Xiaoyan Xie, Zhou Yang, Lei Xu, Yali Jia, Yun Bai, Yi Han, Lin Chen, Lijuan He, Xue Nan, Wen Yue, Xuetao Pei

Background

Although cord blood (CB) offers promise for treatment of patients with high-risk hematological malignancies and immune disorders, the limited numbers of hematopoietic stem cell (HSC)/progenitor cell in a CB unit and straitened circumstances in expanding ex vivo make it quite challenging to develop the successful cell therapies.

Conclusions

Collectively, we demonstrated that HuAECs acted as a permissive niche in facilitating expansion of HSPCs. Our study further implicated that the crucial factors and related pathways presented in HuAECs may give a hint to maintain self-renewal of bona fide HSCs.

Methods

In this study, a novel strategy has been developed to support ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs) by coculture with engineered human umbilical arterial endothelial cells (HuAECs-E4orf1-GFP), which expresses E4ORF1 stably by using a retroviral system.

Results

Coculture of CD34+ hCB cells with HuAECs-E4orf1-GFP resulted in generation of considerably more total nucleated cells, CD34+CD38-, and CD34+CD38-CD90+ HSPCs in comparison with that of cytokines alone or that of coculture with human umbilical vein endothelial cells (HuVECs) after 14-day amplification. The in vitro multilineage differentiation potential and in vivo repopulating capacity of the expanded hematopoietic cells cocultured with HuAECs-E4orf1-GFP were also markedly enhanced compared with the other two control groups. DLL4, a major determinant of arterial endothelial cell (EC) identity, was associated with CD34+ hCB cells amplified on HuAECs-E4orf1-GFP. Conclusions: Collectively, we demonstrated that HuAECs acted as a permissive niche in facilitating expansion of HSPCs. Our study further implicated that the crucial factors and related pathways presented in HuAECs may give a hint to maintain self-renewal of bona fide HSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。