Structural Basis for the Peptidoglycan-Editing Activity of YfiH

YfiH 肽聚糖编辑活性的结构基础

阅读:5
作者:Meng-Sheng Lee, Kan-Yen Hsieh, Chiao-I Kuo, Szu-Hui Lee, Shambhavi Garde, Manjula Reddy, Chung-I Chang

Abstract

Bacterial cells are encased in peptidoglycan (PG), a polymer of disaccharide N-acetylglucosamine (GlcNAc) and N-acetyl-muramic acid (MurNAc) cross-linked by peptide stems. PG is synthesized in the cytoplasm as UDP-MurNAc-peptide precursors, of which the amino acid composition of the peptide is unique, with l-Ala added at the first position in most bacteria but with l-Ser or Gly in some bacteria. YfiH is a PG-editing factor whose absence causes misincorporation of l-Ser instead of l-Ala into peptide stems, but its mechanistic function is unknown. Here, we report the crystal structures of substrate-bound and product-bound YfiH, showing that YfiH is a cytoplasmic amidase that controls the incorporation of the correct amino acid to the nucleotide precursors by preferentially cleaving the nucleotide precursor by-product UDP-MurNAc-l-Ser. This work reveals an editing mechanism in the cytoplasmic steps of peptidoglycan biosynthesis. IMPORTANCE YfiH is a peptidoglycan (PG)-editing factor required for the maintenance of specific amino acid compositions of the stem peptides. However, the activity of YfiH has not been deciphered, and the editing mechanism involving YfiH has remained a mystery. Through X-ray crystallographic and biochemical analyses, we demonstrate that YfiH is a hydrolase with a previously unknown activity specific for the UDP-MurNAc-monopeptide, one of the nucleotide precursors from the cytoplasmic steps of the PG biosynthesis pathway. YfiH selectively hydrolyzes UDP-MurNAc-Ser, an incorrect by-product of the biosynthesis reaction, to ensure that only the correct PG precursor, UDP-MurNAc-Ala, is incorporated. Therefore, this work reveals coupled synthetic and editing reactions in the cytoplasmic steps of PG biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。