Insights into Oxygen Migration in LaBaCo2O6-δ Perovskites from In Situ Neutron Powder Diffraction and Bond Valence Site Energy Calculations

通过原位中子粉末衍射和键价位能量计算深入了解 LaBaCo2O6-δ 钙钛矿中的氧迁移

阅读:6
作者:Fabian Hesse, Ivan da Silva, Jan-Willem G Bos

Abstract

Layered cobalt oxide perovskites are important mixed ionic and electronic conductors. Here, we investigate LaBaCo2O6-δ using in situ neutron powder diffraction. This composition is unique because it can be prepared in cubic, layered, and vacancy-ordered forms. Thermogravimetric analysis and diffraction reveal that layered and disordered samples have near-identical oxygen cycling capacities. Migration barriers for oxide ion conduction calculated using the bond valence site energy approach vary from E b ∼ 2.8 eV for the cubic perovskite to E b ∼ 1.5 eV for 2D transport in the layered system. Vacancy-ordered superstructures were observed at low temperatures, 350-400 °C for δ = 0.25 and δ = 0.5. The vacancy ordering at δ = 0.5 is different from the widely reported structure and involves oxygen sites in both CoO2 and LaO planes. Vacancy ordering leads to the emergence of additional migration pathways with low-energy barriers, for example, 1D channels with E b = 0.5 eV and 3D channels with E b = 2.2 eV. The emergence of these channels is caused by the strong orthorhombic distortion of the crystal structure. These results demonstrate that there is potential scope to manipulate ionic transport in vacancy-ordered LnBaCo2O6-δ perovskites with reduced symmetry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。