Soft tissue sarcoma cells are highly sensitive to AKT blockade: a role for p53-independent up-regulation of GADD45 alpha

软组织肉瘤细胞对 AKT 阻断高度敏感:p53 独立的 GADD45 alpha 上调的作用

阅读:8
作者:Quan-Sheng Zhu, Wenhong Ren, Borys Korchin, Guy Lahat, Adam Dicker, Yiling Lu, Gordon Mills, Raphael E Pollock, Dina Lev

Abstract

The AKT signaling pathway is activated in soft tissue sarcoma (STS). However, AKT blockade has not yet been studied as a potential targeted therapeutic approach. Here, we examined the in vitro and in vivo effects of AKT inhibition in STS cells. Western blot analysis was used to evaluate the expression of AKT pathway components and the effect of AKT stimulation and inhibition on their phosphorylation. Cell culture assays were used to assess the effect of AKT blockade (using a phosphatidylinositol 3-kinase inhibitor and a specific AKT inhibitor) on STS cell growth, cell cycle, and apoptosis. Oligoarrays were used to determine gene expression changes in response to AKT inhibition. Reverse transcription-PCR was used for array validation. Specific small inhibitory RNA was used to knockdown GADD45 alpha. Human STS xenografts in nude mice were used for in vivo studies, and immunohistochemistry was used to assess the effect of treatment on GADD45 alpha expression, proliferation, and apoptosis. Multiple STS cell lines expressed activated AKT. AKT inhibition decreased STS downstream target phosphorylation and growth in vitro; G(2) cell cycle arrest and apoptosis were also observed. AKT inhibition induced GADD45 alpha mRNA and protein expression in all STS cells treated independent of p53 mutational status. GADD45 alpha knockdown attenuated the G(2) arrest induced by AKT inhibition. In vivo, AKT inhibition led to decreased STS xenograft growth. AKT plays a critical role in survival and proliferation of STS cells. Modulation of AKT kinase activity may provide a novel molecularly based strategy for STS-targeted therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。