Stable nuclear transformation of Pandorina morum

Pandorina morum 的稳定核转化

阅读:6
作者:Kai Lerche, Armin Hallmann

Background

Volvocine green algae like Pandorina morum represent one of the most recent inventions of multicellularity diverged from their unicellular relatives. The 8-16 celled P. morum alga and its close multicellular relatives constitute a model lineage for research into cellular differentiation, morphogenesis and epithelial folding, sexual reproduction and evolution of multicellularity. Pandorina is the largest and most complex organism in the volvocine lineage that still exhibits isogamous sexual reproduction. So far, molecular-biological investigations in P. morum were constricted due to the absence of

Conclusion

Stable nuclear transformation of P. morum using the particle bombardment technique is now feasible. Functional expression of heterologous genes is achieved using heterologous flanking sequences from Volvox carteri and Chlamydomonas reinhardtii. The aphVIII gene of the actinobacterium S. rimosus can be used as a selectable marker for transformation experiments in the green alga P. morum. The gluc gene of the marine copepod G. princeps, expressed under control of heterologous promoter elements, represents a suitable reporter gene for monitoring gene expression or for other applications in P. morum.

Results

Stable nuclear transformation of P. morum was achieved using chimeric constructs with a selectable marker, a reporter gene, promoters and upstream and downstream flanking sequences from heterologous sources. DNA was introduced into the cells by particle bombardment with plasmid-coated gold particles. The aminoglycoside 3'-phosphotransferase VIII (aphVIII) gene of Streptomyces rimosus under control of an artificial, heterologous promoter was used as the selectable marker. The artificial promoter contained a tandem arrangement of the promoter of both the heat shock protein 70A (hsp70A) and the ribulose-1,5-bisphosphat-carboxylase/-oxygenase S3 (rbcS3) gene of Volvox carteri. Due to the expression of aphVIII, transformants gained up to 333-fold higher resistance to paromomycin in comparison to the parent wild-type strain.The heterologous luciferase (gluc) gene of Gaussia princeps, which was previously genetically engineered to match the nuclear codon usage of Chlamydomonas reinhardtii, was used as a co-transformed, unselectable reporter gene. The expression of the co-bombarded gluc gene in transformants and the induction of gluc by heat shock were demonstrated through bioluminescence assays.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。