Interstitial Oxide Ion Conductivity in the Langasite Structure: Carrier Trapping by Formation of (Ga,Ge)2O8 Units in La3Ga5- x Ge1+ x O14+ x/2 (0 < x ≤ 1.5)

硅酸镓镧结构中的间隙氧化物离子电导率:通过 La3Ga5- x Ge1+ x O14+ x/2 (0 < x ≤ 1.5) 中 (Ga,Ge)2O8 单元的形成捕获载流子

阅读:3
作者:Maria Diaz-Lopez, J Felix Shin, Ming Li, Matthew S Dyer, Michael J Pitcher, John B Claridge, Frédéric Blanc, Matthew J Rosseinsky

Abstract

Framework oxides with the capacity to host mobile interstitial oxide anions are of interest as electrolytes in intermediate temperature solid oxide fuel cells (SOFCs). High performance materials of this type are currently limited to the anisotropic oxyapatite and melilite structure types. The langasite structure is based on a corner-shared tetrahedral network similar to that in melilite but is three-dimensionally connected by additional octahedral sites that bridge the layers by corner sharing. Using low-temperature synthesis, we introduce interstitial oxide charge carriers into the La3Ga5-x Ge1+x O14+x/2 langasites, attaining a higher defect content than reported in the lower dimensional oxyapatite and melilite systems in La3Ga3.5Ge2.5O14.75 (x = 1.5). Neutron diffraction and multinuclear solid state 17O and 71Ga NMR, supported by DFT calculations, show that the excess oxygen is accommodated by the formation of a (Ge,Ga)2O8 structural unit, formed from a pair of edge-sharing five-coordinated Ga/Ge square-based pyramidal sites bridged by the interstitial oxide and a strongly displaced framework oxide. This leads to more substantial local deformations of the structure than observed in the interstitial-doped melilite, enabled by the octahedral site whose primary coordination environment is little changed by formation of the pair of square-based pyramids from the originally tetrahedral sites. AC impedance spectroscopy on spark plasma sintered pellets showed that, despite its higher interstitial oxide content, the ionic conductivity of the La3Ga5-x Ge1+x O14+x/2 langasite family is lower than that of the corresponding melilites La1+y Sr1-y Ga3O7+y/2. The cooperative structural relaxation that forms the interstitial-based (Ga,Ge)2O8 units stabilizes higher defect concentrations than the single-site GaO5 trigonal bipyramids found in melilite but effectively traps the charge carriers. This highlights the importance of controlling local structural relaxation in the design of new framework electrolytes and suggests that the propensity of a framework to form extended units around defects will influence its ability to generate high mobility interstitial carriers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。