Quantitative Measure of the Size Dispersity in Ultrasmall Fluorescent Organic-Inorganic Hybrid Core-Shell Silica Nanoparticles by Small-angle X-ray Scattering

通过小角度 X 射线散射定量测量超小荧光有机-无机杂化核壳二氧化硅纳米粒子的尺寸分散性

阅读:10
作者:Katherine P Barteau, Kai Ma, Ferdinand F E Kohle, Thomas C Gardinier, Peter A Beaucage, Richard Edward Gillilan, Ulrich Wiesner

Abstract

Small-angle X-ray scattering (SAXS) was performed on dispersions of ultrasmall (d < 10 nm) fluorescent organic-inorganic hybrid core-shell silica nanoparticles synthesized in aqueous solutions (C' dots) by using an oscillating flow cell to overcome beam induced particle degradation. Form factor analysis and fitting was used to determine the size and size dispersity of the internal silica core containing covalently encapsulated fluorophores. The structure of the organic poly(ethylene glycol) (PEG) shell was modelled as a monodisperse corona containing concentrated and semi-dilute regimes of decaying density and as a simple polydisperse shell to determine the bounds of dispersity in the overall hybrid particle. C' dots containing single growth step silica cores have dispersities of 0.19-0.21; growth of additional silica shells onto the core produces a thin, dense silica layer, and increases the dispersity to 0.22-0.23. Comparison to FCS and DLS measures of size shows good agreement with SAXS measured and modelled sizes and size dispersities. Finally, comparison of a set of same sized and purified particles demonstrates that SAXS is sensitive to the skewness of the gel permeation chromatography elugrams of the original as-made materials. These and other insights provided by quantitative SAXS assessments may become useful for generation of robust nanoparticle design criteria necessary for their successful and safe use, for example in nanomedicine and oncology applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。