An Autophagy-Targeting Chimera Induces Degradation of Androgen Receptor Mutants and AR-v7 in Castration-Resistant Prostate Cancer

靶向自噬的嵌合体诱导去势抵抗性前列腺癌中雄激素受体突变体和AR-v7的降解

阅读:1
作者:Tae Hyun Bae # ,Ki Woon Sung # ,Tri M Pham # ,Abdo J Najy ,Alaleh Zamiri ,Hyejeong Jang ,Su Ran Mun ,Seongho Kim ,Ha Kyoung Kwon ,Yeon Sung Son ,Dongping Shi ,Steven Kregel ,Elisabeth I Heath ,Michael L Cher ,Yong Tae Kwon ,Hyeong-Reh Choi Kim

Abstract

Genetic alterations play a pivotal role in various human diseases, particularly cancer. The androgen receptor (AR) is a crucial transcription factor driving prostate cancer progression across all stages. Current AR-targeting therapies utilize competitive AR antagonists or pathway suppressors. However, therapy resistance often emerges due to AR mutations and AR splice variants, such as AR-v7. To overcome this, we developed ATC-324, an AR degrader using the innovative protein degradation technology platform AUTOphagy-TArgeting Chimera (AUTOTAC). ATC-324 was designed to comprise enzalutamide, an AR inhibitor, as a target-binding ligand and YT 6-2, a ligand of the autophagy receptor p62/SQSTM1, as an autophagy-targeting ligand. ATC-324 induces the formation of the AR/p62 complex, leading to autophagy-lysosomal degradation of AR. Importantly, ATC-324 effectively degrades AR mutants frequently detected in prostate cancer and codegrades AR-v7 as a heterodimer with full-length AR. ATC-324 reduces nuclear AR levels and downregulates the target gene expression of AR and AR-v7, leading to cytotoxicity in AR-positive prostate cancer cells. We also provide evidence of the therapeutic potential of ATC-324 in vivo as well as ex vivo bone organ culture. Moreover, ATC-324 remains potent in enzalutamide-resistant prostate cancer cells. These results demonstrate the potential of the AUTOTAC platform to target previously considered undruggable proteins and overcome certain drug resistance mechanisms. Significance: The characterization of an AUTOTAC-based degrader capable of inducing autophagic degradation of wild-type and mutated androgen receptors demonstrates the potential of this approach for targeting castration-resistant prostate cancer and overcoming drug resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。