Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment

数据驱动的分散育种提高了具有挑战性的作物生产环境中的预测准确性

阅读:6
作者:Kauê de Sousa, Jacob van Etten, Jesse Poland, Carlo Fadda, Jean-Luc Jannink, Yosef Gebrehawaryat Kidane, Basazen Fantahun Lakew, Dejene Kassahun Mengistu, Mario Enrico Pè, Svein Øivind Solberg, Matteo Dell'Acqua

Abstract

Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers' knowledge, and environmental analysis into a data-driven decentralized approach (3D-breeding). We tested this idea as a proof-of-concept by comparing a durum wheat (Triticum durum Desf.) decentralized trial distributed as incomplete blocks in 1,165 farmer-managed fields across the Ethiopian highlands with a benchmark representing genomic prediction applied to conventional breeding. We found that 3D-breeding could double the prediction accuracy of the benchmark. 3D-breeding could identify genotypes with enhanced local adaptation providing superior productive performance across seasons. We propose this decentralized approach to leverage the diversity in farmer fields and complement conventional plant breeding to enhance local adaptation in challenging crop production environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。