Disruption of a Sirt1-dependent autophagy checkpoint in the prostate results in prostatic intraepithelial neoplasia lesion formation

前列腺中 Sirt1 依赖性自噬检查点的破坏导致前列腺上皮内瘤变病变的形成

阅读:4
作者:Michael J Powell, Mathew C Casimiro, Carlos Cordon-Cardo, Xiaohong He, Wen-Shuz Yeow, Chenguang Wang, Peter A McCue, Michael W McBurney, Richard G Pestell

Abstract

The Sirtuin family of proteins (SIRT) encode a group of evolutionarily conserved, NAD-dependent histone deacetylases, involved in many biological pathways. SIRT1, the human homologue of the yeast Silent Information Regulator 2 (Sir2) gene, deacetylates histones, p300, p53, and the androgen receptor. Autophagy is required for the degradation of damaged organelles and long-lived proteins, as well as for the development of glands such as the breast and prostate. Herein, homozygous deletion of the Sirt1 gene in mice resulted in prostatic intraepithelial neoplasia (PIN) associated with reduced autophagy. Genome-wide gene expression analysis of Sirt1(-/-) prostates demonstrated that endogenous Sirt1 repressed androgen responsive gene expression and induced autophagy in the prostate. Sirt1 induction of autophagy occurred at the level of autophagosome maturation and completion in cultured prostate cancer cells. These studies provide novel evidence for a checkpoint function of Sirt1 in the development of PIN and further highlight a role for SIRT1 as a tumor suppressor in the prostate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。