RBPMS inhibits bladder cancer metastasis by downregulating MYC pathway through alternative splicing of ANKRD10

RBPMS 通过 ANKRD10 的选择性剪接下调 MYC 通路来抑制膀胱癌转移

阅读:6
作者:Jingtian Yu #, Liang Chen #, Gang Wang, Kaiyu Qian, Hong Weng, Zhonghua Yang, Hang Zheng, Mengxin Lu2

Abstract

RNA-binding proteins (RBPs) are pivotal mediators of the alternative splicing (AS) machinery of pre-mRNA. Research has demonstrated that the AS process is significantly dysregulated and plays a crucial role in bladder cancer (BLCA). We conducted comprehensive screening and analysis of the TCGA-BLCA cohort, specifically focusing on genes with significant differences in expression levels between carcinoma and adjacent non-cancerous tissues. Among the 500 differentially expressed genes, 5 RNA-binding proteins were identified. Only the RNA-binding protein with multiple splicing (RBPMS) demonstrated a consistent downregulation in BLCA and was correlated with an unfavorable prognosis for affected patients. Subsequent experiments revealed that RBPMS exerted inhibitory effects on the epithelial-mesenchymal transition (EMT) pathway and the migratory potential of BLCA cells. RNA-Seq analysis identified ANKRD10 as a key target mRNA regulated by RBPMS in BLCA. RBPMS depletion in BLCA cells resulted in AS of ANKRD10 and increased ANKRD10-2 expression. ANKRD10-2 functioned as a transcriptional co-activator of MYC proteins, thereby augmenting their transcriptional activity. Furthermore, ANKRD10-2 knockdown significantly rescued the migration enhancement induced by RBPMS depletion in BLCA cells. Taken together, this study revealed a mechanism whereby RBPMS suppresses the migration and invasion of BLCA cells by attenuating MYC pathway activity via the AS of ANKRD10.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。