Conclusion
Our data suggest that ASC transplantation has the potential for ALF treatment partly by the mechanism of secreting growth factors contributing to liver regeneration.
Methods
Sprague Dawley rats were used to establish ALF models by D-galactosamine injection. These rats were randomly divided into a human ASC-treated group and a phosphate-buffered saline (PBS) control group. The human ASCs or PBS was transplanted through the spleen of rats. The indices of hepatic function and hepatic histology were dynamically detected, and the survival rates of rats were also counted. Double-fluorescence immunohistochemistry was employed to detect the ASC fate after transplantation. Moreover, both concentrated ASC conditional media and ASC lysates were transplanted through the femoral vain of rats to investigate the therapeutic potential for ALF.
Results
The ASC transplantation group showed improved viability in comparison with the sham control. Histological and biochemical analysis suggested that liver morphology and function were improved in terms of cell proliferation and apoptosis. Although a plethora of ASCs persist in the spleen, the improvement in liver function was obvious. However, ASCs did not differentiate into hepatocytes after engrafting to livers within 3 days. In addition, both concentrated serum-free ASC conditional media and ASC lysates, characterized by high levels of hepatocyte growth factor and vascular endothelial growth factor, demonstrated obvious improvement in terms of high survival rates of ALF rats.
