NEAT1 regulates BMSCs aging through disruption of FGF2 nuclear transport

NEAT1 通过破坏 FGF2 核运输来调节 BMSCs 衰老

阅读:9
作者:Zifei Wang #, Wenyu Zhen #, Qing Wang #, Yuqiang Sun #, Siyu Jin, Sensen Yu, Xing Wu, Wenhao Zhang, Yulong Zhang, Fei Xu, Rui Wang, Yuxuan Xie, Wansu Sun, Jianguang Xu, Hengguo Zhang

Background

The aging of bone marrow mesenchymal stem cells (BMSCs) impairs bone tissue regeneration, contributing to skeletal disorders. LncRNA NEAT1 is considered as a proliferative inhibitory role during cellular senescence, but the relevant mechanisms remain insufficient. This study aims to elucidate how NEAT1 regulates mitotic proteins during BMSCs aging.

Conclusions

Our findings position NEAT1 as a critical regulator of mitogenic protein networks that govern BMSC aging. Targeting NEAT1 might offer novel therapeutic strategies to rejuvenate aged BMSCs.

Methods

BMSCs were isolated from alveolar bone of human volunteers aged 26-33 (young) and 66-78 (aged). NEAT1 expression and distribution changes during aging process were observed using fluorescence in situ hybridization (FISH) in young (3 months) and aged (18 months) mice or human BMSCs. Subsequent RNA pulldown and proteomic analyses, along with single-cell analysis, immunofluorescence, RNA immunoprecipitation (RIP), and co-immunoprecipitation (Co-IP), were conducted to investigate that NEAT1 impairs the nuclear transport of mitotic FGF2 and contributes to BMSCs aging.

Results

We reveal that NEAT1 undergoes significant upregulated and shifts from nucleus to cytoplasm in bone marrow and BMSCs during aging process. In which, the expression correlates with nuclear DNA content during karyokinesis, suggesting a link to mitogenic factor. Within NEAT1 knockdown, hallmarks of cellular aging, including senescence-associated secretory phenotype (SASP), p16, and p21, were significantly downregulated. RNA pulldown and proteomic analyses further identify NEAT1 involved in osteoblast differentiation, mitotic cell cycle, and ribosome biogenesis, highlighting its role in maintaining BMSCs differentiation and proliferation. Notably, as an essential growth factor of BMSCs, Fibroblast Growth Factor 2 (FGF2) directly abundant binds to NEAT1 and the sites enriched with nuclear localization motifs. Importantly, NEAT1 decreased the interaction between FGF2 and Karyopherin Subunit Beta 1 (KPNB1), influencing the nuclear transport of mitogenic FGF2. Conclusions: Our findings position NEAT1 as a critical regulator of mitogenic protein networks that govern BMSC aging. Targeting NEAT1 might offer novel therapeutic strategies to rejuvenate aged BMSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。