Optimized gene transduction in human lung organoids: A high-efficiency method for advanced research applications

人类肺类器官中基因转导的优化:一种用于高级研究应用的高效方法

阅读:11
作者:Jasmin Khateeb #, Jady Liang #, Yuchong Li, Thenuka Thanabalasingam, Julie Khang, Mirjana Jerkic, Giovanna Pellecchia, Bhooma Thiruv, Ya-Wen Chen, Ori Rotstein, Arthur S Slutsky, Haibo Zhang2

Abstract

Human induced pluripotent stem cell (iPSC)-derived lung organoids, engineered to carry targeted genes, offer a robust platform for investigating mechanistic insights in lung research. Although lentiviral vectors (LVVs) are highly effective for stable expression due to their integrative properties, achieving efficient transduction in human iPSC-derived lung organoids poses a significant technical challenge, likely due to the complex structure of these organoids. In this study, we optimized a method to enhance LVV transduction efficiency by physically disrupting the organoids to increase surface area, followed by spinoculation to apply shear force during cell dissociation. This approach, combined with the use of an optimized culture medium, significantly improved transduction efficiency. The success of this method was validated at both the gene and protein levels using single-cell RNA sequencing (scRNA-seq) and various cellular and molecular assays. Our optimized transduction protocol may provide a valuable tool for investigating specific cellular and molecular mechanisms in development and disease models using human iPSCs-derived lung organoids.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。