Cohesive network reconfiguration accompanies extended training

有凝聚力的网络重构伴随着延长的训练

阅读:6
作者:Qawi K Telesford, Arian Ashourvan, Nicholas F Wymbs, Scott T Grafton, Jean M Vettel, Danielle S Bassett

Abstract

Human behavior is supported by flexible neurophysiological processes that enable the fine-scale manipulation of information across distributed neural circuits. Yet, approaches for understanding the dynamics of these circuit interactions have been limited. One promising avenue for quantifying and describing these dynamics lies in multilayer network models. Here, networks are composed of nodes (which represent brain regions) and time-dependent edges (which represent statistical similarities in activity time series). We use this approach to examine functional connectivity measured by non-invasive neuroimaging techniques. These multilayer network models facilitate the examination of changes in the pattern of statistical interactions between large-scale brain regions that might facilitate behavior. In this study, we define and exercise two novel measures of network reconfiguration, and demonstrate their utility in neuroimaging data acquired as healthy adult human subjects learn a new motor skill. In particular, we identify putative functional modules in multilayer networks and characterize the degree to which nodes switch between modules. Next, we define cohesive switches, in which a set of nodes moves between modules together as a group, and we define disjoint switches, in which a single node moves between modules independently from other nodes. Together, these two concepts offer complementary yet distinct insights into the changes in functional connectivity that accompany motor learning. More generally, our work offers statistical tools that other researchers can use to better understand the reconfiguration patterns of functional connectivity over time. Hum Brain Mapp 38:4744-4759, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。