Modeling SARS-CoV-2 and influenza infections and antiviral treatments in human lung epithelial tissue equivalents

在人类肺上皮组织等效物中模拟 SARS-CoV-2 和流感感染以及抗病毒治疗

阅读:5
作者:Hoda Zarkoob #, Anna Allué-Guardia #, Yu-Chi Chen, Andreu Garcia-Vilanova, Olive Jung, Steven Coon, Min Jae Song, Jun-Gyu Park, Fatai Oladunni, Jesse Miller, Yen-Ting Tung, Ivan Kosik, David Schultz, James Iben, Tianwei Li, Jiaqi Fu, Forbes D Porter, Jonathan Yewdell, Luis Martinez-Sobrido, Sara Che

Abstract

There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。